We are looking for an applied scientist to help us define and build a new enterprise application. AWS Applications is building services in Supply Chain Management and is looking for a scientist to tackle complex science problems in Supply Chain including demand planning, supply planning and sustainability which will be used by our customers across a wide range of industries.
We operate a fast growing business and our journey has only started. Our mission is to build the most efficient and optimal supply chain software on the planet, using our science and technology as our biggest advantage. We aim to leverage cutting edge technologies in optimization, operations research, and machine learning to grow our businesses.
As an Applied Scientist, you’ll design, model, develop and implement state-of-the-art models and solutions used by users worldwide. As part of your role you will regularly interact with software engineering teams and business leadership. The focus of this role is to research, develop, and deploy models to improve state-of-the-art for time series. You will have the opportunity to work on our assistant solution allowing our users to ask data questions in natural language and get intelligent insights and exceptions.
Key job responsibilities
Lead and partner with the engineering to drive modeling and technical design for complex business problems.
Develop accurate and scalable machine learning models to solve our hardest supply chain problems.
Lead complex modeling analyses to aid management in making key business decisions and set product direction.
A day in the life
Diverse Experiences
AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
Why AWS?
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.
Inclusive Team Culture
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.
Mentorship & Career Growth
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
Hybrid Work
We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
BASIC QUALIFICATIONS
- PhD, or Master's degree and 6+ years of applied research experience
- 3+ years of building machine learning models for business application experience
- Experience programming in Java, C++, Python or related language
- Experience with neural deep learning methods and machine learning
PREFERRED QUALIFICATIONS
- Experience with modeling tools such as R, scikit-learn, Spark MLLib, MxNet, Tensorflow, numpy, scipy etc.
- . Time Series forecasting experience using statistical, machine learning and deep learning techniques.
- . Have experience in large language models.
Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, please visit https://www.amazon.jobs/en/disability/us.
Our compensation reflects the cost of labor across several US geographic markets. The base pay for this position ranges from $150,400/year in our lowest geographic market up to $260,000/year in our highest geographic market. Pay is based on a number of factors including market location and may vary depending on job-related knowledge, skills, and experience. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, please visit https://www.aboutamazon.com/workplace/employee-benefits. This position will remain posted until filled. Applicants should apply via our internal or external career site.